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Benchmarking pattern recognition, machine learning and data mining methods commonly relies on real-
world data sets. However, there are some disadvantages in using real-world data. On one hand collecting
real-world data can become difficult or impossible for various reasons, on the other hand real-world vari-
ables are hard to control, even in the problem domain; in the feature domain, where most statistical
learning methods operate, exercising control is even more difficult and hence rarely attempted. This is
at odds with the scientific experimentation guidelines mandating the use of as directly controllable
and as directly observable variables as possible. Because of this, synthetic data possesses certain advan-
tages over real-world data sets. In this paper we propose a method that produces synthetic data with
guaranteed global and class-specific statistical properties. This method is based on overlapping class den-
sities placed on the corners of a regular k-simplex. This generator can be used for algorithm testing and
fair performance evaluation of statistical learning methods. Because of the strong properties of this gen-
erator researchers can reproduce each others experiments by knowing the parameters used, instead of
transmitting large data sets.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

From an engineering point of view, the results of evaluations
performed on machine learning methods must be transferable to
a desired application scenario. The evaluations need to yield a
dependency of the performance indicators from basic problem
characteristics in order to be able to generalize the results from
the initially restricted test environment.

Such problem characteristics in the domain of machine learning
predominantly concern the data. This has been theoretically indi-
cated by the No-Free-Lunch theorem discussed by Wolpert and
Macready (1997) and practically verified many times, most prom-
inently by the Statlog report in (King et al., 1995). A particular fo-
cus on the transferability resulting from the data characteristics
has been payed by van der Walt and Bernard (2007), yielding a
metaintelligence successfully predicting the appropriate classifiers
based on dataset characterizations.

In contrast to this, current practice of experimental algorithm
evaluation lacks the extensive use of such data characteristics. In-
stead, it is dominated by the use of domain specific and mostly
real-world datasets (most notably the UCI repository UCI, 2009).
ll rights reserved.
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Unfortunately, as Rachkovskij and Kussul (1998) point out, there
are two major drawbacks in using such data:

� Firstly, the aforementioned basic characteristics of the data (e.g.
covariance, Bayes error, geometric aspects, external and intrin-
sic dimensions) are typically not fully known and extremely dif-
ficult to control.
� Secondly, accessing real-world data in most domains is difficult

for budget, technical or ethic reasons to name some. This typi-
cally results in a limited amount of data available for testing
purposes, which can impede and even preclude important prac-
tical conclusions.

In order to allow for a more systematic investigation of machine
learning methods, yielding generic results, we believe it is neces-
sary to use synthetic data generators that control significant data
characteristics.

Given this importance of synthetic data generation, publica-
tions on generation methods with controlled statistical properties
are quite rare. Indeed, Pei and Zaı̈ane (2006) observed the same:

‘‘Surprisingly, little work has been done on systematically generat-
ing artificial datasets for the analysis and evaluation of data analysis
algorithms in data mining area.’’

Motivated by this, we contribute a new synthetic data generator
with controlled statistical data characteristics, like means, covari-

http://dx.doi.org/10.1016/j.patrec.2011.04.010
mailto:janick.frasch@iwr.uni-heidelberg.de
mailto:aleksander.lodwich@dfki.de
mailto:aleksander.lodwich@dfki.de
mailto:faisal.shafait@dfki.de
mailto:tmb@cs.uni-kl.de
http://dx.doi.org/10.1016/j.patrec.2011.04.010
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec


1524 J.V. Frasch et al. / Pattern Recognition Letters 32 (2011) 1523–1531
ance, intrinsic dimensionality and, most importantly, the Bayes
error rate.
2. State-of-the-art

In the beginning, a brief survey on existing synthetic data gen-
erators shall be given, demonstrating the scope of current research
and its limitations. We start with domain-specific approaches, dis-
cussing more general approaches afterwards.
2.1. Specific approaches

Most of the synthetic dataset generators are specifically de-
signed to test machine learning methods in specific domains. Such
generators use parameterized models that create realistically look-
ing data.

Helmers and Bunke (2003), for example, have built handwriting
samples from actual character templates for the testing of hand-
writing recognition systems using synthetic generators.

Baird (2000) gave a good overview on methods generating syn-
thetic document image data from real images through the use of
degradation models. These approaches have parameters control-
ling the degradation operators, not the statistical properties of
the degraded characters.

Other examples of domain specific synthetic data generators are
the ones from document image defect models discussed by Baird in
(Baird, 1993) and the ones which have been investigated by the US
Census Bureau for maintaining the confidentiality of original micro
data, cf. Abowd and Lane (2003). The latter generators were also
trained from real-world data.

Purely synthetic data, generated from statistical models based
on Gaussian mixtures trained on real-world data has been used
for evaluation purposes in protein spot detection methods for 2D
images, as described by Rogers et al. (2003).

For knowledge discovery systems Jeske et al. (2005) proposed a
system for generating synthetic social data based on a to-be-de-
fined semantic graph.

Davidov et al. (2004) described a method for an automated
dataset acquisition of labeled textual content from the World Wide
Web to be used in text categorization systems. Collecting data
according to specific parameters can be seen as a special approach
for synthetic data generation.

For completeness, some preceding work to be mentioned is
the IBM Quest Data Generator (Srikant, 1999) and the GSTD
(Theodoridis et al., 1999). IBM’s generator is relational and is
targeting at concept learning from relational databases which
is a similar work to Jeske et al. (2005); the GSTD is motivated
by geodesian applications and simulates Brownian movement of
rectangularly grouped vertices through spatio-temporal feature
space. None of the methods controls global statistical properties,
though.

There is a series of Hidden Markov Model (HMM) based data
generators. Unlike the methods presented above hardly any con-
trol over the generation can be exercised. This is due to the fact,
that although HMM is a quite general process model, final HMM
models are trained to be specific, e.g. like a natural source of data.
This restricts the value of this method for benchmarking purposes
as it follows an objective totally different from the one emphasized
in this paper.
2.2. More general approaches

All of the above methods have in common that they only work
for specific problem domains where problem dependent variables
are known but the resulting feature distributions are quite com-
plex and statistically not fully understood.

Rachkovskij and Kussul (1998) demonstrated a more general
algorithm generating samples from a partitioned feature space
including a uniform background noise. The proposed method offers
parameters for partitioning the feature space into different regions
(‘‘classes’’) as well as for the distribution of the samples generated
from each class. One major drawback of the so called DataGen
method is that it only produces class distributions with many
uncontrolled properties, which make it difficult to interpret the
generated data as feature vectors from any actual real-world sce-
nario. As the authors acknowledge, generating data with internal
dependencies is not directly possible with the presented method,
but anyway desirable.

Another example for an attempt to create generic data genera-
tors is the work of Pei and Zaı̈ane (2006). The main goal of this
work was to generate data usable for unsupervised learning and
outlier detection. The parameters are the number of clusters, dis-
tance between the clusters, the total number of points, cluster dis-
tributions and outlier controlling parameters. The generator
operates in 2D and provides five levels of difficulty. The generator
can add uniform background noise and transform the densities
into a higher dimensional space. However the generator is not able
to control statistical properties relevant for the qualitative or quan-
titative evaluation of supervised learning algorithms.

The work probably most closely related to the one presented
here is the one from van der Walt and Bernard (2007). The authors
have used very simple Gaussian mixture models in order to debunk
myths or ‘‘common wisdom’’ like for example ‘‘discriminative clas-
sifiers tend to be more accurate than model-based classifiers at classi-
fication tasks’’ or that ‘‘k-nearest-neighbors (kNN) classifiers are
almost always close to optimal in accuracy, for an appropriate choice
of k’’. This work clearly demonstrates the usefulness of synthetic
dataset generators based on generic density mixtures. However,
the authors had to set the centers and other parameters of the mix-
tures manually without an explicit model that guarantees a unique
mapping between the generated model instance and the character-
istic parameters (i.e. parameters that correspond to measurable
quantities of the experiments to be executed on the data generated
by the model). Such an approach lacks control over the constructed
model instance and therefore its reproducibility, since insignificant
(from the point of view of later experiments) parameters account-
ing for additional degrees of freedom need to be set.

Also, due to this overhead of manual work, the authors were
only able to consider up to 10 dimensions, 4 classes and 1000 sam-
ples/density which are not representative of real classification
problems today. In order to continue this promising path of re-
search, a greater degree of automation is desirable.

In the following, we propose a new method for synthetic data-
set generation, the White Gaussian on k-simplex model (WGKS).
The benefit of our contribution is the full control over the relevant
statistical properties, which can overcome the hitherto discussed
disadvantages. In particular, the Bayes error rate is controlled,
which is important as a qualitative reference for the evaluation
of machine learning algorithms.
3. The White Gaussians on k-simplex data generation model

The purpose of the WGKS generator is to have a simple and
symmetric model representing very simple classification problems.
Independent of the learning model, these problems are character-
ized by the equal stochastic treatment of the classes. No class den-
sity shall have any advantage of being modeled better than any
other class density. This generator is creating unimodal problems
for each class where resulting data is stratified in its nature.
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In particular the following features of the model will be known
and directly controllable: (1) the number of classes, (2) the number
of intrinsic dimensions, (3) the number of samples and, most
importantly (4) the Bayes error between the class densities. By
post-processing, it is also possible to control (5) the centroid, (6)
the external dimensionality and (7) the dataset covariance.

The most significant advantage of this method over existing
methods is the known Bayes error rate; thus we call this class of
methods Bayes-true data generators.

The WGKS generator can be obtained from http://madm.
dfki.de/downloads for the Python environment using the NumPy
and SciPy libraries.

The generation model in the standard form is based on white
Gaussian densities located at the corners of a regular k-simplex
(see Fig. 1). It can be modified choosing other distributions instead.

The k-simplex explicitly defines the number of densities and
implicitly defines the number of intrinsic dimensions d = k � 1.
This setup guarantees that all density centers are having the same
euclidean distance to each other, thus ensuring the aforemen-
tioned equal stochastic treatment.

The central difficulty in generating data according to this model
lies in the fact that even in the comparatively easy case of white
Gaussian distributions there is no known explicit solution for the
edge length k of the simplex with Bayes error e(k).

This means, the cost function ke(k) � etk, where et is the target
error rate, has to be minimized over all k by some optimization
procedure.

Furthermore, even e(k) cannot be computed explicitly for arbi-
trary dimensions. This means standard nonlinear optimization
methods will imply repeated Bayes error computation by time-
consuming Monte Carlo simulation. To allow a convenient practi-
cal usage of WGKS, we will present some major ideas for speedup
in the following.
3.1. Computing the Bayes error

The probabilities of each class c for a sample xh are given by

fcðxh; kÞ ¼
1

ð2pÞd=2jRj1=2 e�
1
2ðxh�kvc ÞT R�1ðxh�kvcÞ; ð1Þ

where R is the covariance matrix (can be omitted, because we are
considering white Gaussians), k is the edge length of the simplex
and vc are the coordinates of the vertices of the k-simplex with edge
length 1.
Fig. 1. WGKS places white normal densities on the corners of a k-simplex.
We consider two different Monte Carlo methods for computing
the Bayes error:

A) Direct evaluating of the confusion matrix. All samples xh whose
originator class co is not equal to the most likely class ĉ with
largest posterior probability fc(xh, k) are counted as false
classified. The number of false classified samples divided
by the overall number of samples is the estimate for the
Bayes error rate.

B) Importance sampling. The probabilities of each class c, in par-
ticular of the most likely class ĉ for a sample xh are given by
pðĉjxhÞ ¼
fmaxðxhÞPk

i¼0fiðxhÞ
;

with fmax(xh) being the largest density. Computing their mean
over all samples �p ¼ 1

jXj
PjXj

h¼1pðĉjxhÞ also yields an estimator
for the Bayes error rate e ¼ 1� �p, based on the idea of impor-
tance sampling. For a detailed mathematical derivation see
Appendix A.
It can be shown (see Appendix A) that the variance of method B
is always smaller than the variance of method A, hence on the
average method B converges faster.

However, there is a trade-off, since the computation of the like-
lihoods for each sample in method B usually takes more time as the
check for misclassification in method A can be sped up for many
kinds of identical densities (e.g. for white Gaussians, this reduces
to distance calculations between the sample and the center of each
density). Also, method A is inevitable when the posteriors of the
samples are not available but only classifier labels of the Bayesian
classifier.

3.2. Revision of Bayes error computation

Since the Bayes error computation relies on Monte Carlo simu-
lation, a large number of samples is needed for reasonable accu-
racy. However, the amount of samples is highly limited by the
available computation time and memory. We propose a more effi-
cient approach that exploits the total symmetry of this setup. From
the implementation it can be seen that the time complexity of the
model with likelihood recomputation based on arbitrary R for
every investigated k is O(l � n � k3) if R is the identity matrix (or a
scalar multiple thereof) because then R can be ignored in (1).
The optimized method has a time complexity of O(l � n � k), where
l is the number of optimization epochs, n is number of samples
per density and k is the number of densities. For a detailed discus-
sion on time complexity we refer to Lodwich et al. (2009).

The basic idea is that the full data space is divided in equal com-
partments by the decision hyperplanes. The hyperplanes consist of
all equidistant points between pairs of centers. Since all density
functions are symmetrically arranged and identical, the total Bayes
error must be equal to the Bayes error in each compartment.
Therefore, we can reduce the problem to computing the Bayes er-
ror in a single compartment. As it can be seen from Fig. 2 (for for-
mal details see Theorem 1 in Appendix B.1) the total mass of a
density function outside the decision manifolds containing its cen-
ter equals the mass of the other density functions constituting the
error in that compartment. This means that the Bayes error e can
be computed as the ratio between the density mass lying outside
the boundaries and the total density mass of a single density. Using
Monte Carlo estimation this can be approximated by simply count-
ing the ratio between samples lying outside the compartment and
the overall number of samples, where the samples are generated
from only one density.

In order to avoid computing the likelihoods fc(xh, k) for each
sample xh, the density can be transformed in a way that the com-
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Fig. 2. Exploiting the symmetry of the setup for error computation.
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partment containing the center of the density coincides with the
first orthant in the Cartesian coordinate system. Thus the task of
performing a Bayes optimal classification on a sample xh is reduced
to the task of checking for a negative sign in one of the coordinates
of xh and subsequent manipulations of k during optimization are
reduced to simple vector translation operations. Alternatively,
the densities can be resampled and transformed in every optimiza-
tion step. However, this has two disadvantages: (a) the computa-
tional complexity is higher and (b) the cost function is not
deterministically monotone.

For a detailed mathematical description of the transformation,
see Appendix B.2.

3.3. Accuracy improvement for small error rates

Least-squares retrofitting of experimental data strongly sug-
gests that for a fixed k the relation between k and e is based on
the inverse of the complemented error function (see Fig. 3).

This seems reasonable, since white Gaussian densities are used.
By contrast, inverse polynomial and trigonometric functions and
combination thereof failed to approximate the recorded values
which are presented in Fig. 3.
Fig. 3. Relationship between the error and the distance k for a given number of
white normal densities positioned on a regular k-simplex. The implicit number of
dimensions is k � 1. Values are obtained experimentally.
In particular, kðe; kÞ ¼ � 1
sk

erfcinvð2eÞ þ yk, which only depends
on a slope parameter sk and a vertical shift parameter yk, presents
a well suitable approximation of the k-e relationship; other param-
eters proved to be insignificant for the experimental data.

Since all probability density functions are identical, it is obvious
that for k = 0 the Bayes error rate equals (k � 1)/k, which yields one
parameter.

For determining the second parameter, the calculation of k for
any other target error rate et will suffice. We choose et = 0.5, since
the absolute slope of the inverse error function is smallest at this
value. This means, a small deviation of the achieved error rate
due to the statistical spread of the Monte Carlo estimation will re-
sult in the smaller deviation of k than for any other target error rate.

These considerations can be used in two ways. Firstly, since the
variance of k is larger for small et, it can make sense to compute the
parameters of the inverse error function instead as suggested and
evaluate the latter for the desired et.

Secondly, when k is needed for multiple error rates for the same
k, the presented approach only needs to perform the expensive
Monte Carlo simulation once.

We used this method to generate a lookup table that is imple-
mented in the downloadable version of the WGKS and can be used
for fast determination of k. The parameter values were computed
in the above manner using extensive Monte Carlo sampling. Note
that for k = 2 the inverse error function is just the standard inverse
error function. For k > 100, due to computational limitations, a full
list of values cannot be provided. However, for these k, k depends
almost log-linear on k (cf. Fig. 4) and hence can be extrapolated.

3.4. Optimization of k for generic densities

The generator can be modified in order to generate samples
from more general density prototypes (again placed on the corners
of a regular k-simplex). However, using a look up table method as
mentioned above does not work anymore, since the distance to er-
ror relationship will typically become non error-function like and
may even be not monotonic or discontinuous. Finding the optimal
parameter k in this case can either be performed by gradient des-
cent methods (if the class densities are differentiable), in our case
by multisection search (Csallner et al., 2000) or by other global
(possibly stochastic) optimization methods.

3.5. Post processing guaranteeing intrinsic dimensionality

In the WGKS module, there is a series of post processing steps
that can be used to create affine variations of a dataset in order
to test a classifier for its robustness. We propose random transla-
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tion, scaling, shearing and rotation methods, as well as a method of
fitting the data to a given covariance matrix. The main purpose of
these modifications is to embed the generated data into higher
dimensional spaces.

3.5.1. Random translation
Translations do not change any other parameters than the

means and are simply implemented by adding a random vector to
all samples. For WGKS, this random vector is obtained in two steps:

1. A random direction vector is generated form an d-dimensional
normal distribution and subsequent normalization.

2. A random length scalar is generated from a uniform or normal
distribution.

3.5.2. Random rotation
Rotation changes the means and the absolute covariance char-

acteristics but the shape is preserved.
In order to obtain a random rotation matrix with each rotation

equally likely, we make use of the fact, that each orthogonal matrix
with determinant 1 represents a rotation.

We start off with a d � d matrix with entries xi;j �Nð0;1Þ. Since
this resembles d d-dimensional normally distributed random vec-
tors, we get an equally distributed likelihood concerning the direc-
tions (angles). We then orthogonalize this matrix, e.g. by a QR
decomposition, taking Q (which already has determinant 1) and
yield an orthogonal matrix with each rotation direction equally
likely, since the directions of the starting vectors were uniformly
random. This procedure has been described by Genz (1999).

3.5.3. Random scaling
As scaling parameter we chose a log-normal distributed variable

z �Nlogð0;rÞ. According to the survey done by Limpert et al. (2001)
this is the most dominant form of one-sided distributions for natu-
ral problems. The characteristic of the chosen distribution parame-
ters is that the distribution median is at 1. The r-parameter, which
is accounting for the spread, is user-defined.

3.5.4. Random shearing
An easy way to obtain a random shearing matrix is to start with

a orthogonal matrix I (identity matrix) and break its perpendicular-
ity by modifying l randomly chosen specific linear dependencies
between different coordinates by

Min ;jn �Nð0;rÞ;
with in; jn � Uðf1; . . . ; ngÞ, in – jn and ðin1 ; jn1
Þ– ðin2 ; jn2

Þ, where n runs
from 1 to l and UðAÞ denotes the discrete uniform distribution on
the set A.

3.5.5. Fixing the outer covariance matrix
This method transforms a given dataset affinely in a way, such

that it follows a given covariance matrix. This is achieved in three
steps. In the first step a PCA is performed on the data X, so that
eigenvectors are obtained and, scaled by their eigenvalues, stored
in a Matrix M1. Applying M�1

1 to X will rotate and whiten the sup-
plied data and yield X0. Next, we perform eigenvalue decomposi-
tion of the target covariance matrix R and thus obtain a matrix
M2 of the eigenvectors, again scaled by their eigenvalues. We then
transform X0 by M2 and yield Xt which satisfies the desired covari-
ance matrix R.

Formally, for a data point x, we have

xt ¼ M2 � ðM�1
1 � ðx�~cÞÞ þ~c:
4. Experiments

In this section we demonstrate the usefulness of being able to
control characteristic parameters of the classifier evaluation. The
WGKS directly controls the number of densities/dimensions, sam-
ple size and the Bayes error rate. We use this to exemplarily inves-
tigate the question of how the error rate of the 1-nearest-neighbor
algorithm (1-NN) truly behaves between the theoretical bounds for
k classes, the Bayes error rate e and e � ð2� k�1

k � eÞ (cf. Duda et al.,
2000).

Those bounds however only hold true in the case of an infinite
sample size; for a practitioner this knowledge is just a loose guess
of what he can expect when applying the nearest neighbor method
to real data, which is surely finite and might even be small. It is a
priori unclear how the error behaves in this case and in particular,
whether it can swell beyond the theoretical bounds. Also, it is via-
ble to know how the error rate changes, when the number of train-
ing samples used or the number of classes varies.

For simplification, real-world data is often assumed to be of
some kind of Gaussian mixture. Hence the WGKS method with
its controlled Bayes error rate is well suited for investigating this
problem.

4.1. Experimental setup

We considered datasets with k = 2, 5, 10, 20 classes and Bayes
error rates e between 0 and (k � 1)/k in steps of 0.05 for each k.
Also for each k and e training sample sizes of 100, 1000 and
10,000 samples per class density (n) for the 1-NN were considered.
The size of the test data set was chosen to be 5000 n. This guaran-
tees that the probability granularity is always the same.

4.2. Experimental results

The experiments were repeated 12 times and results are
presented in Figs. 5–8. It can be observed that the behavior of
the 1-NN is depending on all three studied parameters (k, e, n).

Three basic observations can be made from the graphs:

1. The variance of the classification rates decreases, when the
number of classes k increases.

2. For an increasing k, the average performance curves’ sensitivity
to n increases. A larger number of samples tends to yield a bet-
ter performance.

3. The overall performance of the 1-NN classifier decreases with
increasing k.



Fig. 5. The average performance curves of the 1-NN classifier on the WGKS data for
k = 2 classes and n = 100 (brown), 1000 (orange) and 10 000 (blue) relative to the
Bayes error rate. The vertical bars next to the data points show plus/minus the
standard deviation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. The average performance curves of the 1-NN classifier on the WGKS data for
k = 5 classes and n = 100 (brown), 1000 (orange) and 10 000 (blue) relative to the
Bayes error rate. The vertical bars next to the data points show plus/minus the
standard deviation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. The average performance curves of the 1-NN classifier on the WGKS data for
k = 10 classes and n = 100 (brown), 1000 (orange) and 10 000 (blue) relative to the
Bayes error rate. The vertical bars next to the data points show plus/minus the
standard deviation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. The average performance curves of the 1-NN classifier on the WGKS data for
k = 20 classes and n = 10 (green), 100 (brown) and 1000 (orange) relative to the
Bayes error rate. The vertical bars next to the data points show plus/minus the
standard deviation. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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4.3. Experiment interpretation

With the help of the WGKS data generation model we demon-
strated that it is possible to identify the performance distribution
of the first nearest neighbor classifier. As the WGKS is an off the
shelve tool, we were able to quickly construct an experiment yield-
ing useful information for the practice.

The 1-NN performs best for binary decisions where the first
nearest neighbor will have an average performance much better
than the theoretical upper bound. Also, for a low number of classes
already few samples per density seem to be sufficient for a good
performance whereas when k grows, the number of samples per
class must be significantly enlarged. In particular, the overall num-
ber of samples must grow overproportionally to yield a perfor-
mance within the theoretical bounds of the infinite case.

5. Discussion

With synthetic data generators it is possible to systematically
perform controlled experiments that allow to gain generic insights
on a machine learning tool’s performance. In contrast, using
natural datasets for reference, like the ones found in the UCI repos-
itory, limits the study of influence factors (data characteristics),
since such characteristics are almost impossible to control
independently.

The proposed generator delivers data for testing supervised and
unsupervised learning methods on large-scale problems with a
high degree of automation. This data can be embedded into high
dimensional spaces maintaining controlled statistical properties.
In this way our generators can control intrinsic dimensionality.
The structure of the data is predictable, repeatable and compre-
hensive. Our generator delivers true Bayes posteriors that on the
one hand allow to compare how well classifiers estimate these
and on the other hand define a reference for classifiers’
performances.

Concretely, the WGKS generator allows to perform a variety of
hypothesis testing experiments by guaranteeing specific stochastic
properties. Our generator can guarantee a specific global Bayes er-
ror rate, sample size, structure (class relationships), number of
dimensions, dataset covariance and data centroid. Apart from that
it is possible to add transformations to test for trivial data
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variations. This is also helpful to find weaknesses in new algo-
rithms as they should not get influenced by these transformations.

A beneficial side effect of using well controlled synthetic data
generators in general, and the WGKS in particular, is the simplified
reproducibility of scientific work. Instead of actually providing data
any author can describe the procedure of data generation, which
can be reproduced according to these descriptions. Our implemen-
tation of the WGKS produces these descriptions automatically, so
that they can be either attached to a publication or made available
for download on the internet.

The generator is open source and the Python implementation is
available for download at the MADM website.1 SciPy is required,
but beyond this the generators can run almost in any computer
environment. SciPy allows exporting of data to many formats
including Matlab so that Matlab users can harness the provided
generator.

6. Conclusion

Synthetic data generators which can control the statistic prop-
erties of the feature vectors are important tools for experimental
inquiries performed in context of machine learning and pattern
recognition. We proposed a new generator that can be used to
model simple problems with fully known statical characteristics.
Issues concerning the efficiency of the methods were discussed
and significant improvements in speed were presented, making
the WGKS method of practical use.

We consider this work as a cue to stimulate further work in this
field. In (Lodwich et al., 2009) we demonstrate other synthetic
Bayes-true data generators for dynamic processes emulation based
on random walks and partially linear models.
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Appendix A. Variance comparison of Bayes error computation
methods

The methods A and B from Section 3.1 for the Bayesian error
rate computation will be compared formally in terms of their var-
iance in the following.

We compute the Bayes error rate by e = 1 � cor, where cor is the
fraction of samples being classified correctly by the optimal Bayes-
ian classifier with equal priors. In order to compare the two meth-
ods for estimating cor we will need the following definitions:

� 1MðxÞ is the characteristic function of the set M;
� co(x) denotes the ground truth, i.e. the originator class of a sam-

ple x;
� ĉðxÞ denotes the class with the largest Bayesian posterior

probability;
� f(x) is the density function of any of the identical densities in the

WGKS model;
� p(M) is the probability of a set M;
� Aj denotes the Bayesian acceptance region of density j, Ao

denotes the one of the originator class co;
� k is number of densities;
� f �ðxÞ ¼ 1

k

Pk
j¼1fjðxÞ is the mixture density of all WGKS densities

and
� jXj is the number of samples.
1 https://madm.dfki.de/downloads.
A.1. Method A: confusion matrix evaluation

We have

cor ¼
Z

1ĉð�Þ¼coð�ÞðxÞ � f �ðxÞdx � 1
jXj
XjXj
h¼1

1ĉð�Þ¼coð�ÞðxÞ

by standard Monte Carlo estimation, where x is sampled from the
mixture of all densities f⁄. For the estimator 1ĉð�Þ¼coð�ÞðxÞ of a sample
x we have

1ĉð�Þ¼coð�ÞðxÞ ¼ 1Ao ðxÞ:

Hence for the variance of the estimator it holds:

varð1Ao ðxÞÞ ¼ pðAoÞ � ð1� pðAoÞÞ ¼ ð1� eÞ � e:
A.2. Method B: importance sampling

Derivation. It holds

cor ¼
Z

1ĉð�Þ¼coð�ÞðxÞ � f �ðxÞdx ¼ 1
k

Xk

j¼1

Z
1Aj
ðxÞ � fjðxÞdx

¼ 1
k

Z
fmaxðxÞdx; ð2Þ

where fmax(x) = maxj = 1, . . . , kfj(x). This can be approximated, using
the idea of importance sampling:

1
k

Z
fmaxðxÞdx ¼ 1

k

Z
fmax

1
k

Pk
j¼1fjðxÞ

� f �dx ¼
Z

fmaxPk
j¼1fjðxÞ

� f �ðxÞdx

¼ E�
fmaxðxÞPk
j¼1

fjðxÞ

0
BBB@

1
CCCA � 1

jXj
XjXj
h¼1

fmaxðxhÞPk
j¼1fjðxhÞ

:

Note that the xh are sampled from the joined mixture density.
Variance. We can compute the variance of the estimator fmaxðxÞP

fjðxÞ
by

var
fmaxðxÞP

fjðxÞ

� �
¼ E�

fmaxðxÞP
fjðxÞ

� �2
 !

� E�
fmaxðxÞP

fjðxÞ

� �� �2

¼ 1
k

Z ðfmaxðxÞÞ2

ð
P

fjðxÞÞ2
�
Xk

i¼1

fiðxÞdx

� 1
k

Z
fmaxP
fjðxÞ

�
Xk

i¼1

fiðxÞdx

 !2

¼ 1
k

Z
fmaxðxÞP

fjðxÞ|fflfflffl{zfflfflffl}
61

�fmaxðxÞdx� 1
k

Z
fmaxðxÞdx|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼1�eby ð2Þ

0
BBB@

1
CCCA

2

since the densities are identical and have the same error rate. This
can further be reduced to

var
fmaxðxÞP

fjðxÞ

� �
6 ð1� eÞ � ð1� eÞ2 ¼ ð1� eÞ � e ¼ varð1AðxÞÞ;

the variance of the confusion matrix estimator.
Hence it holds var(estimator (A)) P var(estimator (B)) and it is

easy to see that estimator (B) is better in the case of
fmaxðxÞ <

Pn
j¼1fjðxÞ.
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Appendix B. Transformation for Bayes error computation
speed-up

B.1. Formal verification of results

Lemma 1. Let D1,D2, . . . ,Dk be k = d + 1 densities with centers
l1,l2, . . .,lk located on the corners of a regular k-simplex in an d
dimensional Euclidean Space. Let Bj,l be the d � 1 dimensional
perpendicular line bisector of the centers of the densities Dj and Dl,
j – l. If
Fig. 9. Obtaining of the coordinate system S.
(a) all pairs of densities Dj and Dl are symmetric by reflection
through Bj,l and

(b) each density Di is mirror symmetric by reflection through each
Bj,l "j,l 2 {1, . . . ,k}n{i}, j – l,

then all densities are positioned rotationally invariant, i.e. a rotation
by any true rotation S 2 Sym(k-simplex), the symmetrical group of
the k-simplex, does not change the overall setup except for the labels
of the densities in the respective global position.
Proof. From elementary geometry we know that in 2D a rotation
is equivalent to two concatenated reflections through lines a and
b (Kane, 2001). The angle of the rotation equals two times the angle
between a and b. This can be generalized to 3D (Beardon, 2005)
and arbitrary dimensions (Kane, 2001), using dihedral angles (the
angles between two hyperplanes). Hence we can express a rotation
S 2 Sym(k-simplex) by a concatenation of an even number of
reflections through some hyperplanes B�,�. Fomin and Reading
(2008) show that these hyperplanes indeed are the perpendicular
line bisectors. It is also shown there that due to the setup of the
densities on a regular k-simplex each Bj,l runs through all other
centers xi, i – j, l, hence fixes them. By assumption (b), for each
reflection through Bj,l, all other densities Xi remain in an equivalent
state. By assumption (a) the densities Xj and Xl are symmetric by
reflection through Bj,l, hence for the overall setup this just results
in a swap of the labels j and l. All in all this means the simplex is
rotation invariant to any rotation from Sym(k-simplex). h
Theorem 1. Let N1,N2, . . . ,Nk be k = d + 1 identical Normal distribu-
tions with covariance matrices Ri = r2I and centers li, i = 1, . . . , k
located on the corners of a regular k-simplex in an d-dimensional
Euclidean Space E. Let Bi,j be the (d � 1)-dimensional perpendicular
line bisector of the centers of the densities Ni and Nj, i – j. Then Bi,j

are the Bayesian decision boundaries. Furthermore, the overall Bayes-
ian error rate is equivalent to the error rate of each density.
Proof. Bi,j is the Hyperplane consisting of all equidistant points
between li and lj. Since Ni and Nj are identical and have diagonal
covariance matrices (being scalar multiples of the identity matrix),
the Bayesian decision boundary (assuming equal priors) is Bi,j

(Duda et al., 2000). The boundaries Bi,j "i,j = 1, . . . ,k, i – j subdivide
E into k compartments, each defined by {Bi,jjj 2 {1, . . . ,k}n{i}} corre-
sponding to the space where one density Ni dominates the others.
Obviously, a pair of densities Nj and Nl are symmetric by reflection
through Bj,l and clearly each density Ni is invariant to reflection
through any other Bl,j, l, j 2 {1, . . . ,k}n{i}, l – j, since such a Bl,j runs
through li. By Lemma 1 this means the densities arranged on the
simplex are rotational invariant and hence the error rate in each
compartment must be the same and hence be equivalent to the
overall error rate. Again as a result from the symmetry of Ni and
Nj (and the invariance of all other densities), the density mass that
is misclassified as ‘‘Class i’’ though belonging to Nj equals the den-
sity mass that is misclassified as ‘‘Class j’’ though belonging to Ni.
Using this argument for all densities Nj neighboring Ni, we get that
the error rate in each compartment is equivalent to the error rate
of each single density Ni. h
B.2. Detailed description of the transformation

In detail, the transformation described in Section 3.2 works as
follows. Note that all vector coordinates are expressed in terms
of a global coordinate system where N1 is located at the origin
and N2 is located on the x1-axis.

1. Let the k-simplex be centered at its centroid. Let S (Fig. 9) be the
coordinate system consisting of the direction vectors of the
equidistance lines of each (k � 1) density centers (with one
thereof always being l1, the center of N1) in an order such that
l1 lies in the first orthant. The basis vectors ei spanning S can be
computed by ei = m � lk�i "i = 1, . . . ,k � 1, where m is the cen-
troid of the simplex.

2. Transform the coordinate system to a Cartesian one S0. Compute
l01 by l01 ¼ S�1 � l1.

3. Since S�1 is a linear transformation, to ensure equivalence of the
classification problems, it suffices to sample from a normal den-
sity N01 ¼Nðl01;R

0Þ in the new coordinate system, where
R0 ¼ S�1 � R � ðS�1ÞT ¼ S�1 � ðS�1ÞT if the original R was the unit
matrix.
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